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A Genesis of Natural Numbers  
Diego Pareja-Heredia. Universidad del Quindío 

 
“The origin is the goal”. Karl Kraus. 

 

Abstract. We present here some ideas to change arithmetical teaching, from kinder garden up 

to tertiary math education. Beginning with syntax and semantics of numerical language, we 

introduce a new definition of natural numbers in order to construct equivalence classes of 

polynomials that change completely the concepts of factoring and primality of natural 

numbers. The most important thing is the introduction of a new procedure to check primality 

and to find prime factors for given, at least for now, small natural numbers. 

Resumen. Presentamos en este trabajo, algunas ideas encaminadas a cambiar la enseñanza de 

la aritmética, desde el jardín infantil hasta la enseñanza universitaria. La inclusión de la 

sintaxis y la semántica del lenguaje numérico, nos permite lograr una nueva definición de 

número natural y construir clases de equivalencia de polinomios, que cambian radicalmente 

los conceptos de factorización y primalidad en los números naturales. Lo más importante 

hasta aquí, es, la introducción de un nuevo procedimiento para chequear primalidad, junto a 

un algoritmo para hallar los factores primos, al menos hasta ahora, de números naturales 

pequeños. 

 

Introduction 

Natural numbers are an important part of human culture. Number theory begins in 

Mesopotamia, following its path through Hellenistic times to merge in the Middle Ages with 

the current originated in Arab and Indian cultures. Leonardo Fibonacci left for us his 

mathematical mark in Liber Abaci (1202) mixing on it, hindu-arabic math with classic Greek 

number theory. From those times, number theory has been growing with the works of great 

mathematicians like Fermat, Euler, Gauss, Hilbert and many more. 

Since antiquity natural numbers have been taken by granted, as Kronecker onetime said: “God 

made the integers, all the rest is the work of man”. However, in the last part of nineteen 

century, Gottlob Frege begun a formalization of number theory introducing for first time a 

definition of number, based on set theory, a topic studied, among others, by Cantor.  

Frege definition of number is rooted on the function set concept, namely, the association of a 

natural number to a set, in other words, the number of elements of that set. So a natural 

number, n, is the set of all sets where each set has n elements. From Frege’s time, up to now, 

we have accepted this definition; nevertheless, much questioning about that did arise ever 

after. Frege’s interest in defining number was to get a solid base in order to formalize number 
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theory and to get proofs for properties, which were accepted before, as axioms relating 

number operations. 

Here we start with some elementary notions: a vocabulary and a couple of operations defined 

with it: multiplication with the property of transmitting factoring and addition with the 

capacity of creating primality. The reiterative use of these operations, together with some 

simple syntax rules, give rise to some entities called here polynomials. 

 

The Origin 

We don’t know exactly in what period of human history, numbers, as we understand today, 

appear. However, we think, that some operations or routines preceded numbers. A routine 

operation as adding, doesn’t need to know numbers, it is just putting together objects to 

perform a new set; also, multiplication could be seen, as a repetition of previous addition 

processes. The first approximation to the abstract concept of number could be through the 

natural process of counting. 

Counting is present in most primitive cultures from the past, up till now. Language made 

counting something important because of the possibility to transmit information and to have at 

hand methods to make the most primitive calculations. In primitive times, we can imagine, 

human beings doing additions through handling small objects and multiplications through 

repetitions. 

So, let’s try to replay this ancient processes starting with addition and multiplication in their 

most primitive meaning, adding as putting together and multiplying as repeating. Language 

contributes with symbol words to ease, all of these elementary procedures. Imagine we have 

previously established a grouping pattern, say ten; and we have number words for 0, 1, … , 9, 

then we can go further with ten, with the meaning of one package of ten units. Here appears 

the great jump from addition to multiplication. A ten package really means, one, counted ten 

times. From here up begins the combination of grouping and repeating. 

Suppose again, we just have now numbers words and not yet number symbols. The number 

word eleven, would have the meaning one ten plus one; in the same vein, twelve would be, 

one ten plus two, fifty eight, would have a meaning of five (times) ten plus (and) eight, and so 

up to ninety nine as nine (times) ten plus (and) nine. In one hundred there is another jump 

because we put together ten packages of ten to perform a major unity, namely, one hundred to 

mean ten times ten. This primitive process, human beings, come repeating over and over 

again throughout millennia, changing of course the pattern of counting, in some cases ten, 

twelve, twenty, even, sixty. 

So, in the beginning was language. Number symbols are very recent invention of the humans. 

There are no records of number symbols, say, before fifty thousand years ago and we can 

suppose human race is living in the world for around two hundred thousand years. Inside 

language there is a lot of information that, we, as teachers, may use as tools for improving 
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basic mathematics teaching. The early use of numerical language in elementary school, is one 

the aims of our math education project. 

Emphasizing on numerical representation through language is the most important thing in 

teaching elementary math for kids. Before using number symbols, children have to be able to 

understand number words, their syntax and semantics. When they hear the words “forty 

three”, they understand “forty and three, or, forty plus three” and can translate to a real 

situation of “four packs of ten and three more units”, or, semantically: “four times ten plus 

three”. This last sentence, carry on, in its meaning, a profound information message: not only 

a numerical information, also there is a syntax on it, together with a meaning (semantics). The 

arrangement of words have an order, and the terms, “times” and “plus”, are associated to the 

most elementary concepts of addition and multiplication. 

According to our experience kids assimilate early and easily numbers words together with its 

syntax and semantics. At kinder garden they get in contact with number symbols and are 

approaching to adding and multiplication processes. At this stage of formation, the most 

important aspect to take in account is the use of their hands and, contrary to the customs; they 

may touch anything they can, of course, except those things that might have any risk for their 

security.  

We propose to reach natural numbers by following the path: 

 1) Creating motivation toward the ability to handle small objects to make piles, groups, lots, 

assortments, and any kind of collections with special characteristics. The goal here is getting 

the natural mechanism of adding.  

2) To make some selection of a sort of pattern, for instance: pairs, triplets, quadruples, 

quintuples, etc. Repeating experiences of this type, we are motivating the child toward the 

comprehension of multiplication. 

The idea behind these first experiences, is to pave the road to introduce natural numbers in a 

naïve way using addition and multiplication, as primitive elements. Since adding and 

multiplying is so basic to the apprehension of the number concept, these two operations has to 

be a most, at kinder garden preparation to define and understand the number concept. These 

two operations are the deep rock where polynomials will stand. From some special type of 

polynomials, we are going to construct, all arithmetical theory to be taught at elementary 

school.    

 

The Number Language. 

Along the way we are introducing number words, we are slowly replacing numbers words by 

number symbols. The first step, of course, would be, showing the most simple symbols to 

write the smallest numbers, namely, the digit set, S = {0,1,2,3,4,5,6,7,8,9}, equivalent to an 

alphabet for writing all natural numbers, whenever we need a decimal representation. We also 
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take some primitive parameters like “+” and “ · ”
1
. When we begin using mathematical 

symbols (numerals), in our language, we can say that we are changing from colloquial 

language to numerical language. 

The words in numerical language are strings of symbols, where the alphabet digits are linked 

by the primitive parameters, “+”, and, “ · ”, with the syntactic rule,  

                  x
n
 = 10x

n-1
          (*) 

The meaning of (*) in our context, is: the value of n-th position inside the numeral, counted 

from 0 to n and from right to left, is ten times the value of (n-1)-th position in the numeral. 

That is the reason why our number system is a decimal positional system. If we would use the 

syntactic rule, x
n
 = 2x

n-1
, our numerical system would be a binary one, with the alphabet {0, 

1}. Let’s see a couple of examples. 

Example 1 

The number, four thousand three hundred twenty one, given in colloquial language means in 

numerical language “four times thousand, plus, three times hundred, plus, two ten, plus, one” 

and its symbolic representation is; 

4321 = 4·1000 + 3·100 + 2·10 + 1  

We see clearly, how are arranged the ten powers, in descending order from 10
3
 down to 10

0
 = 

1. In this number representation, the syntactic rule (*) is explicitly shown, meaning that left 

digit corresponds to thousands, the following to hundreds, at right tens and finally the units. 

Using powers of ten and changing 10 by x, we get 

4321 = 4·1000 + 3·100 + 2·10 + 1 = 4·10
3
 + 3·10

2
 + 2·10 + 1·10

0
 = 4·x

3
 + 3·x

2
 + 2·x + 1 

The last expression, remind us the one variable polynomial, P(x) = 4x
3
 + 3x

2
 + 2x + 1, with x 

arranged in descending order. Polynomials like these, we call standard decimal polynomials. 

This kind of polynomials is the base for our main definition below. 

Example 2 

A number like 987, as any other, can be written with the use of (*), in several ways, besides 

the standard form described above. Let’s show some of them: 

                                                     
1
 All machinery inherent to formal languages, is suggested at: 

http://www.matematicasyfilosofiaenelaula.info/articulos/Sintax_and_Semantics_of_Numerical_Lenguage_at_El

ementary_School.pdf  

http://www.matematicasyfilosofiaenelaula.info/articulos/Sintax_and_Semantics_of_Numerical_Lenguage_at_Elementary_School.pdf
http://www.matematicasyfilosofiaenelaula.info/articulos/Sintax_and_Semantics_of_Numerical_Lenguage_at_Elementary_School.pdf
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987 = (standard form) 9x
2
 + 8x + 7 = 8x

2
 + x

2
 + 8x + 7 = 8x

2
 + 10x+ 8x + 7 = 8x

2
 + 18x + 7 = 

8x
2
 + 17x + x + 7 = 8x

2
 + 17x + 17 = 7x

2
 + 27x + 17 = 6x

2
 + 38x + 7 = …  

If we replace x by 10 we recapture the initial number 987. 

 

Factoring and Primality 

Factoring is the property of a number of being expressed as a product of two or more factors. 

As main definition below accepts, any number is either prime or composite. However a prime 

number p, has also the property p·1 = 1·p = p. So multiplication preserves factors anyhow the 

number be either prime or composite. For the case of composite numbers, this property is 

more visible. For instance, the prime factors of 6 are 2 and 3 and the prime factors of 35 are 7 

and 5, we can easily check that the prime factors of 6·35 = 210 are: 2, 3, 5 and 7, the same 

factors of 6 and 35. In general, if we multiply any number n ≠ 1, by m ≠ 1, the product n·m is 

a composite number.  

Addition, however, has the property of transforming primes in composite or vice versa, 

composite numbers in primes. Not always, of course, but we can. Take for example any prime 

p ≠ 2, then p + 1 is not prime because, all primes, except 2, are odd and so p + 1 is even and 

so, it is a multiple of 2. Also, take a composite as 12 and add to it 7, to get the prime 19. 

When we add two prime numbers we are not sure, either we are going to get a prime or a 

composite number, as in the following cases: 2 + 3 = 5 (prime plus prime gives prime); 3 + 7 

= 10 (prime plus prime gives composite). In general, (naively) every even integer greater than 

two, can be expressed as a sum of two primes (Goldbach’s conjecture). 

A natural number a, written with its own digits an , an-1 ,  … ,  a1 , a0, as (anan-1…a1a0), looks 

like: 

a = (anan-1…a1a0) = an x
n
 + 1

1





n

n xa + … + a1x + 0

0xa  =
jn

nj

j

jn xa 





0

 

When x = 10 we recover the conventional form of representing a = (anan-1…a1a0). We call the 

above polynomial, the standard polynomial representation of a. Note that the coefficients 

in this polynomial, are the same digits as in the decimal representation of a.  

Definition 1.We say that two polynomials P(x) and Q(x), are equivalent module a, if P(10) = 

Q(10). If that is the case, we use the notation, P(x) ≡ Q(x) (module a).  

For instance, a = 236 can be associated to the standard polynomial p(x) = 2x
2
 + 3x + 6, where 

the coefficients of p are the digits 2, 3, 6. Using syntactic rule (*) on p, we get an equivalent 

polynomial such as, q(x) = x
2
 + 13x + 6, so, 2x

2
 + 3x + 6 ≡ x

2
 + 13x + 6 (module a), since, p 
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(10) = q (10). Easily we can check that: 10
2
 + 13(10) + 6, and, 2(10)

2
 + 3(10) + 6, give the 

same result: 236. 

The main definition below, gives us a different way to see natural numbers as equivalent 

classes of one variable polynomials. For each number a, we can construct a family of 

equivalent polynomials, via the syntactic rule (*).  

The Main Definition  

We define number a = (anan-1…a1a0), as the family of all equivalent polynomials module a as: 

Ωa = { jn
nj

j

jn xb 





0

, such that, any polynomials p, q, in the family satisfies p(10) = q(10)}. 

The classical definition of prime number is linked to the concept of division. Here we take 

another road: we use factoring. 

Definition 2  

A number a, defined using Ωa, is said to be composite if there exists a polynomial p in Ωa, 

which can be factored. Otherwise a will be called prime.  

Example 3. Find the prime factors of a = 5893.  

The equivalence class for this number is: 

Ωa = {5x
3
 + 8x

2
 + 9x + 3, 50x

2
 + 8x

2
 + 9x + 3, 58x

2
 + 9x + 3, 57x

2
 + x

2
 + 9x + 3, 57x

2
 + 10x + 

9x + 3, 57x
2
 + 19x + 3, 56x

2
 + 29x + 3, …, 5893} 

The polynomial, 56x
2
 + 29x + 3 in Ωa, can be factored in the following way: 

56x
2
 + 29x + 3 = (7·8)x

2
 + (7·3)x + (8)x + 3 = 7x(8x + 3) + (8x + 3) = (7x +1)(8x + 3). 

When we replace x = 10 the first polynomial gives 5893 and the last one gives 71·83 and so, 

5893 = 71·83.  

This example show us, how in some cases, it is easy to find the prime factors of a composite 

number without using division at all. Inside the class Ωa we may see all its elements as equals 

and operate them as polynomials, having all their properties, among others, and the most 

important one: the unique factorization property.  

Example 4. In classical number theory, the way to decide, if either a number a is prime or composite, 

is through the repeated division of a by the primes p, 2 ≤ p ≤ √a. Here, we make use of main definition 

for a, instead. We only check Ωa, for a factorable polynomial. Let’s check the number a = 127 for 

primality. 

Ωa = {x2
 + 2x + 7, 10x + 2x + 7, 12x + 7, 127} 
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All polynomials in Ωa are equivalent module 127, i.e., when we change x by 10 we get 127. If 

one of them factors, the number 127, also factors, otherwise, 127 is prime. No polynomial in 

Ωa factors, then 127 is a prime number. 

Until here, the problem to decide if a is or not prime have been reduced to factoring quadratic 

polynomials. To practice the techniques of factoring polynomials I suggest some of my past 

works about this topic
2
. 

Example 5. Finding factors of number a = 15347 takes a little more time. With some 

shortcuts we get: 

Ωa = {x
4
 + 5x

3
 + 3x

2
 + 4x + 7, 153x

2
 + 4x + 7,  152x

2
 + 14x + 7, 151x

2
 + 24x + 7, 150x

2
 + 34x 

+ 7, 149x
2
 + 44x + 7, …, 15347}  

We can factor: 

149x
2
 + 44x + 7 = 149x

2
 + 440 + 7 = 149x

2
 + 447 = 149x

2
 + 3·149 = 149(x

2
 + 3) = 103·149. 

We replaced above, 447 = 44x + 7 = 4x
2
 + 4x + 7 = 3(x

2
 + 4x + 9) = 3·149 

That shows that 15347 = 103·149. 

In this paper I have tried to show another way to see natural numbers, and also, how we can 

change traditional routines for rational algorithms, easily comprehensible to kids, I hope.  

 

Armenia, Colombia, November 2015. 

 

                                                     
2
See:  http://www.matematicasyfilosofiaenelaula.info/articulos/Numbers_as_%20a_product_of_Primes.pdf  

 And: 

http://www.matematicasyfilosofiaenelaula.info/conferencias/The_Number_Language_eimat2015_Conferencia.p

df  

http://www.matematicasyfilosofiaenelaula.info/articulos/Numbers_as_%20a_product_of_Primes.pdf
http://www.matematicasyfilosofiaenelaula.info/conferencias/The_Number_Language_eimat2015_Conferencia.pdf
http://www.matematicasyfilosofiaenelaula.info/conferencias/The_Number_Language_eimat2015_Conferencia.pdf

