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1. — Introduccion.

La nocion de métrica o medida esta inmersa en las matematicas, al menos, desde los mismos
origenes de la Geometria. Cuenta Herddoto (Siglo V AC) en la historia del mundo antiguo,
que, la geometria tuvo su origen en Egipto, y estaba asociada a las técnicas de medir terrenos;
de alli su nombre griego: de geo, tierra 'y metron, medida. La medida es tema importante en
toda rama de las ciencias facticas, y particularmente llega a casi todo el espectro del anélisis y
las matematicas aplicadas, desde las ecuaciones diferenciales hasta la teoria de probabilidades.

La teoria de la medida se convirti6é en una parte independiente del andlisis comenzando el siglo
XX con los trabajos de Henri Lebesgue (1875-1941), Maurice Frechet (1878-1973) y Emile
Borel (1871-1956) de un lado, y del otro con los aportes a la construccion de los espacios,
llamados abstractos, por David Hilbert (1862-1943) y Stephan Banach (1892-1945) y la fuerza
que imprimi6 a estos temas la escuela polaca de matematicas liderada por Zygmunt
Janiszewski (1888-1920), primero, y luego por Waclaw Sierpinski (1882-1969), Kazimierz
Kuratowski (1896-1980), Stefan Mazurkiewicz (1888-1945), Alfred Tarski (1902-1983) y
Stanislaw Ulam (1909-1984), entre otros. Un impulso importante en la generalizacion del
estudio de la teoria de la medida, a nivel universitario, la inicié Paul R. Halmos (1916-2006)"
con su libro, ahora un cléasico, Measure Theory. Halmos, un discipulo de J. L. Doob (el mismo
de los Procesos Estocasticos), fue asistente de John von Neumann en el Instituto de Estudios
Avanzados de la Universidad de Princeton y es hoy, un personaje de gran estatura en la
comunidad matemadtica mundial.

Entre lo mas intuitivo del conocimiento matematico estd el concepto de medida, que no es otra
cosa que asociar a un objeto un valor numérico. Los objetos a los que se aplica la medida,
desde luego, deben ser susceptibles de ser medidos, como, por ejemplo, la longitud de una
curva o de un segmento de recta, el drea de una superficie, la densidad de la materia, la carga
eléctrica de una bateria, la probabilidad de que un fendémeno o suceso ocurra. La medida en los
segmentos, es la longitud, en las superficies, el rea y en los sdlidos, el volumen. Estas medidas
que vienen desde los griegos, no fueron cuestionadas si no hasta los principios del siglo XX,
cuando se encontraron resultados muy extrafios como es el caso de la Paradoja de Banach-
Tarski, segiin la cual, dos esferas solidas A y B en el espacio tridimensional, aun de diferente
volumen, una de ellas podria descomponerse en un numero finito de partes disyuntas, de tal
manera que al rearmarse se puede obtener la otra. Esto genera resultados contra evidentes, a tal
extremo, de aceptar que una arveja se puede descomponer en un nimero finito de partes
disyuntas para a partir de éstas, reconstruir una esfera del tamafio de nuestro sol. A este
resultado llegaron Banach y Tarski con argumentos basados en el axioma de eleccion. Para una
relacion histérica de este resultado y su conexion con el problema de medida, ver [2].

El célculo integral, empezando con el método de Arquimedes, ha asociado cantidades
numéricas a conjuntos de distinto tipo; ya sean estos, superficies limitadas por curvas, ya sea

!'Ver Obituario de Paul Richard Halmos en: http://www.matematicasyfilosofiaenelaula.info
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concentracion de masa en cuerpos laminares o volumenes de solidos. En general, la integracion
de funciones de valor real o de funciones definidas en espacios abstractos, como espacios de
Hilbert o de Banach asigna valores reales, que cuando son no negativos se pueden pensar como
valores de una medida. La teoria de probabilidades tiene como objeto de estudio las variables
aleatorias, que vistas desde la perspectiva del analisis se comportan como funciones, y por lo
tanto, su tratamiento recurre también a la integral en el caso continuo, y a las series en el caso
discreto.

2. — La definicion de métrica.

La brevedad de esta nota, no permite estudiar las métricas en extenso. Un estudio detallado de
estos temas se encuentra en Royden [4]. Pero, la comprension de lo que sigue no requiere mas
que la definicion de métrica.

Una métrica definida en un conjunto producto SxS, es una funcion d, de valor real, con las
siguientes propiedades:

(1) d(x,y) = 0.Paratodo par (x,y)en SxSyd(x,y)=0,siysolosix=y.
(i) d(x,y)=d (y, x). Siempre que (X, y) en SxS.
(i) d(x, z) < d(x,y) +d(y, z), para todo x, y, z en S (Desigualdad del Triangulo).

A la funcion d asi definida, se le da el nombre de métrica, o funcion distancia en S. A
funciones como d, se les da el nombre de funciones de conjunto, porque en efecto, asocian con
cada conjunto de su dominio, un numero real. El par (S, d) se conoce en andlisis matematico,
como un Espacio Métrico.

Un espacio métrico sencillo y cercano a nosotros es, el espacio euclideo, constituido por R” y
la métrica euclidea usual:

n

dex,y) = D (x,—-»).

i=1

Donde, x = (x1, x2,..., Xn), ¥ =(Y1, y2, ..., yn).

., . y . . 3 .
También puede definirse métricas en subconjuntos M de R”, como por ejemplo en la esfera
hueca, centrada en el origen y radio R > 0, cuya definicion analitica es:

S: ={(x,y,2) e RP:x* +y> +z°> =R’ .

Fig. 1
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Esta superficie, también conocida como ‘“2-esfera”, es un ejemplo, (entre los mas sencillos,
después de la recta y la circunferencia), de ciertos objetos topoldgicos introducidos por
Bernhard Riemann (1826-1866), que se denominan variedades (o manifolds, en inglés). Una
buena referencia para estos temas es el capitulo 1 del libro de S. S. Chern [1].

En topologia se entiende por variedad n-dimensional, un espacio de Hausdorff, segundo
contable, para el cual, toda vecindad de un punto de la variedad es homeomorfica a una n-

esfera abierta del espacio euclideo R".

Una superficie como S7 , sirve para modelar la superficie de la tierra. Aqui la distancia entre

dos puntos x e y, se calcula usando la longitud de la geodésica que une a estos puntos. Las
curvas que unen dos puntos, de tal forma que su longitud sea minima, se llaman geodésicas. En
la 2-esfera, las geodésicas corresponden a arcos de circunferencias maximas. Circunferencias
maximas son circunferencias que resultan de la interseccion de la superficie esférica con planos
que pasan por el centro de la esfera. Mas adelante daremos formulas explicitas que definen esta
distancia. Las “rectas” en la 2-esfera corresponden a circunferencias méximas. Se observa que
las perpendiculares (Figura 1), a una recta se interceptan en un punto (para el caso de la figura,
en el polo norte). La geometria inducida por la métrica que daremos para S es riemanniana,

con una caracteristica muy especial: no hay rectas paralelas.

3. —Proyecciones y Métricas.

Una proyeccion cartografica de un subconjunto abierto U de la esfera S+, en el plano R?, es

una funcién, X: U - R?, donde X es tal que:
1) X es uno a uno,

i1) X es diferenciable y

1i1) X tiene inversa diferenciable.

Funciones de este tipo se conocen como difeomorfismos. Una aplicacion conocida de este tipo,
es la aplicacion introducida por Gerardus Mercator en 1569, usada en cartografia para hacer
levantamiento de mapas de regiones de la tierra. La definiciéon de proyeccion cartografica
puede extenderse, desde luego, a superficies S mas generales como, toros o variedades de otras
dimensiones.

La imagen de U en R’ por una proyecciéon de este tipo, se llama un mapa cartografico o un
atlas de la superficie considerada. Para deducir aspectos geométricos de la superficie S; o de

una de sus partes U, debemos analizar sus versiones planares, o sean sus mapas, X (U) en R”,
donde X es una funcion con las caracteristicas arriba mencionadas. A través de la proyeccion
cartografica llevamos los rasgos geométricos que nos interesan de U al plano, y es alli donde
los estudiamos para deducir caracteristicas a veces dificiles de estudiar directamente en la
superficie, como son: medidas de longitud, areas de regiones, dngulos entre curvas, etc. La
medida geométrica basica de una curva es su longitud, y ésta puede calcularse si conocemos la
métrica que rige la proyeccion de la curva en R’ . Generalmente los atlas traen las escalas que
permiten calcular distancias en los mapas a fin de estimar esas mismas distancias en la
superficie “mapeada”. La escala comlin viene en kildémetros, o en millas estatutarias que
recuerdan la proyeccion de Mercator. La métrica asigna a cada punto de X(U) un producto
interno con el cual la longitud de los vectores tangentes y los dngulos entre vectores tangentes
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en el plano se pueden determinar, como si ellos fueran las curvas correspondientes sobre la
superficie y fueran medidas alla.

Fue Eugenio Beltrami (1835-1900) quien probd que la condicion para que existan proyecciones
definidas en la variedad que conviertan geodésicas en rectas sobre el plano es que, la superficie
tenga curvatura constante. Consecuencia de este trabajo fue el hecho de considerar superficies
de curvatura negativa pero constantes, lo que le condujo a resultados interesantes en 1868,
algunos de los cuales intentaremos describir aqui.

Normalmente una métrica ds, en S’ se representa en la siguiente forma:
: E(u, z') + 2F (u, vl- G(u, v)

Con lo cual estamos significando, que la longitud s de la curva «:[¢,,t,] > U queda
determinada por la integral,

e

| ] P

& du\" o i du dv ] “dv \
[ E(u(t), z‘(/))( ) + 2F (u(t), v(t))— — + (/(u(l).l'(l))(—)
Jo dt dt dt dt

Donde (u(¢), v(t)) = X ca(t). Aqui X oa(t), corresponde a la funcién X calculada en el radio
vector a(t) que traza la curva cuando ¢ recorre el intervalo [z, , ¢,]. Hemos encerrado en
circulos los diferenciales para resaltar el rol que juega la medida en la definicién de métrica:
aqui la métrica ds, es la medida del arco de curva en términos de las medidas diferenciales du,
dv y dt. Cuando la superficie es un subconjunto de R*, las funciones componentes de la
métrica se calculan de la proyeccién a través de ciertos productos internos en R*. Mas
exactamente para proyecciones de la esfera se tiene:

ax-! ax! , ax-1 ax—

E(u,v) = : -, Fu,vy)y=—:—, G v)=— ,
du du au Jv ov v

ax—! ax-!

Para describir una superficie abstracta, simplemente eliminamos el dominio de la proyeccion.
Esto es, se nos da una coleccion (el atlas) de coordenadas cartograficas o proyecciones, junto
con la métrica (las escalas) que determinan localmente la geometria, es decir la forma de medir
en cada mapa. Se entiende que en sectores donde hay traslapamientos, las medidas deben
coincidir, condicién que la va hacer precisa las reglas de transformacion propias de la
geometria diferencial. Para detalles sobre estos temas puede verse el libro de S. S. Chern [1].

Aqui nos interesa una proyeccion particular de la esfera S %, que se define en el hemisferio sur,
digamos, U = {(x,y, z) € S3: z<0}. Proyectamos U sobre el plano T = {(x,y, -R) € R’ },
tangente a la semiesfera en el polo sur, llevando una recta desde el centro de la esfera, tocando

la superficie U en un punto hasta llegar al plano T, como se ve en la figura 2. Una proyeccioén
de este tipo se llama proyeccion central o “gnémica” y esta dada por:

X(A,¢) = (- Rcos(A)cot(¢), - Rsen( A )cot(¢)),

donde hemos identificado T con R”, al ignorar a la coordinada en z. Asi damos a la esfera
sus coordenadas geograficas, su longitud 4 en (-7, 7))y su latitud ¢ en (-7/2, 0). Los
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puntos del hemisferio norte quedaran también determinados al hacer énfasis en que la latitud es
norte, al igual que lo hacemos en geografia terrestre.

Fig. 2

4. El Programa de Beltrami

La proyeccion central goza de una propiedad muy interesante: las geodésicas sobre la esfera,
esto es, las circunferencias maximas (o arcos de éstas), se convierten por virtud de la
proyeccion, en rectas o en segmentos de rectas en el plano. Esto hace que la navegacion
parezca sencilla usando el recurso de esta proyeccion por cuanto que la trayectoria de menor
longitud en la esfera, corresponde en el plano, o en el mapa, a una trayectoria rectilinea.
Eugenio Beltrami, se propuso el problema de determinar la existencia de una superficie, para la
cual, una proyeccion lleva, geodésicas, a lineas rectas en el plano. Su prueba lo condujo a que
si esa superficie existe, ésta debe tener curvatura constante. Cuando la curvatura es positiva, las

esferas S ; son los ejemplos estandar.
La métrica que aparece usando la proyeccion central esta dada por:

7(R" + v du® = 2uvdudv + (R* + u?) dv?

(R? + u? + v?)2

ds* = R

Tomando q = 1/R* (la curvatura), ds toma la forma:

(1 4+ qv?)du* —2quvdudv + (1 + gu*) dv?

(1 4+ qu* + guv?)? (1)

ds® =

Ahora supongamos que hacemos variar ¢ sobre R. Cuando g > 0, la geometria que encontramos
es la geometria de la esfera de radio 1/+/g . Cuando g = 0, encontramos ds® = du’ + dv’, que

corresponde a la métrica euclidea. Cuando ¢ < 0, Beltrami encontraria algo nuevo: una
proyeccion cartografica que no correspondia a una superficie concreta.

5. — Definicion del g-plano y 1a nocion de longitud.
El g-plano es el subconjunto Dq de R* dado por

Dq={(uv):1+qu’ +qv> >0},
dotado de la métrica (1).
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Cuando ¢ < 0, se encuentra el disco abierto de radio 1/,/— ¢, centrado en (0, 0); parag > 0,

Dy = R?, el plano euclideo. Para cada escogencia de g, las rectas euclideas en Dq corresponden
a geodésicas en la geometria determinada por ds” .

Vamos a hacer un poco de trigonometria en Dq, comenzando con los tridngulos rectangulos. El
problema basico de la trigonometria es la llamada resolucion de triangulos, donde se trata de
determinar las relaciones de los dngulos y los lados del triangulo. Es de destacar que entre las
primeras areas de las matematicas en desarrollarse, estuvo la trigonometria esférica, en razén al
hecho de que ésta tiene mucho que ver con astronomia. Fue por ello que la cultura babilonia
desde el II milenio antes de Cristo se interesd en estos temas. La trigonometria esférica, sin
embargo, fue tratada sistematicamente por Leonhard Euler (1707-1783), quien fijo, desde esa
época los métodos usados para la resolucion de triangulos esféricos. La resolucion de triangulos
esféricos corresponde al problema de encontrar tres datos desconocidos, cuando se conocen los
tres datos restantes relacionados con lados o angulos de un tridngulo esférico.

Queremos estudiar el tridngulo rectangulo en el plano Dq y en relacién con la métrica ds
definida en (1). Para obtener las longitudes de los lados de un triangulo rectangulo
supondremos que su comportamiento geométrico es invariable en todo Dq, lo que nos permite
escoger un tridangulo convenientemente situado, por ejemplo, aquel que tenga uno de sus
vértices en el el origen del plano (u, v) y uno de sus catetos en el eje u, como se muestra en la
figura 3.

B=(x,y)

a

0,0)=A b C =0

Fig. 3
Lo primero a confirmar es que el tridngulo es, en efecto, un triangulo rectdngulo en Dq. El
angulo en C estd formado por segmentos que vienen de curvas coordenadas, es decir, de curvas
del tipo u ? (u, 0) y v 7 (x, v). El angulo entre las dos curvas puede leerse directamente de la

meétrica: el coseno del angulo formado por las curvas coordenadas viene dado por F/vEG y F

=-quv/(1- u® - v*). Puesto que v =0 en C, estas curvas se interceptan en angulo recto. En
segundo lugar determinamos la longitud de los lados. Parametrizamos AC como la curva S (¢)

=(t,0),con0 <t<x. df /dt=(1,0),ds=(1+qt’) " /dty obtenemos

Yodt
- [ &
Para el lado BC, sea a () = (x, t), 0 < Jo 1 +qgt® ¢t <y Entonces d a/dt= (0,
1).

Y, ds = \J1+qx* dt/(1+gx* +qt*). De donde se sigue que



/ 5

y \""/] + ([_\.2 e y d (1/\/# | + (/.\“2) B / via/S 1+gx- dt
e 0 | +(I\‘2+([’2(, N 0 7 ofF iy 2 JO I ‘{"(/I2
] e (r/ st Lot q.\‘~)

Finalmente para el lado AB, sea y (f) = (tx, ty) con 0 < ¢ < 1. Entonces d y/dt=(x, y), y

c=

/" I."I(] + qt2y?)x? — 2q12x2y? + (1 + gt?x?)y? ]
' > .I\D at
o (1 4+ gt>x% + gt y?)?

dt

Jo 14qg(/x*+ y*1)? —Jo

/‘* ST / HWSETTRD //— 7
I
0 (

+ g(x* + y?)¢? [ + g2

En todos los casos aparece la integral jor(l +qt*)"'dt . La teoria de funciones elipticas sugiere

introducir una nueva funcidn.

5 Funciones elipticas y el teorema de Pitagoras.

Sea s un numero real, definimos la funcion z, (s), implicitamente a través de la ecuacion:

Ty () d,
S = N BT
0 l + (/"

Para el tridngulo rectangulo ABC, la definicion nos da

y IS8 o a2
T, (b)) =x, 7t(a)= —— o) =yxT+y”
v 1+ gx* (2)

7,(s) Juega el rol de la funcion tangente en Dq. Podemos introducir las otras funciones

analogas a las funciones trigonométricas, explorando las propiedades de 7, (s). La primera

propiedad que encontramos se deriva de la aplicacion del teorema fundamental de célculo:

dz,(s)ds=1+q 4 (9).

Por analogia con d/ds (tans) = sec’ s, introducimos las siguientes funciones s, (8)y o,(s),
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\fl +gt2(s)

‘.éq(ﬂ} =2 O‘q{ﬁ) =Ty (S)Eq (5)

De la definicién se sigue
1 =§2(s)(1+ g, () =& (s) + qo, (s)

EL TEOREMA DE PITAGORAS.
Supongamos que el tridngulo ABC es un triangulo rectangulo en Dq con su dngulo recto en C.
Si la longitud de los lados opuestos a los vértices A, By C, son a, b y ¢, entonces

§q(c) = §4(a)§,(b)

Demostracion. Por la definicidn, se tiene:

§,(¢) = ———== 1 > N
V"“l i ('/T(/:((‘) \/l +:g(xX= +.y*=)
Puesto que
j 1 ’ ; 2 |

De lo cual se sigue que:
&,(c) = §,(a)é, (D)

Para relacionar esta expresion con el tradicional teorema de Pitdgoras, vamos a considerar qué
ocurre cuando ¢ tiende a cero. Usando series infinitas, podemos escribir:

;

o dr 5 5 5 7
b= — - = 1 —gt* +g°t° — (/I'—\'—(——l—( e aieTa
/() l ":['(/[~ l/() I / / ] / / 5
Por lo tanto b*=x"-g(2x*/3 + ...).
Usando los valores de a y ¢ dados por: -
. 3 . raf v S L
a=|; SR gt?) ! dt €= _.I'HV (1 +qgr°) " di,

Expandiendo el denominador e integrando las series, llegamos a que

. y2 ( ’7\'
E-lr-. —= _—_‘ —_ e — | .o
I —I—qr-‘ ?(I + gx?)?

3 a3 '
"= X" ()B4,
Haciendo tender q a cero se obtiene
. . ” } 1
a® + bt — x* + y- c* — x4+ Ve

De donde se sigue a” + b> = ¢’ el conocido teorema de Pitagoras.



6. — Valores particulares. Aqui las variables estan relacionadas segtn la figura 3.

Trigonometria Esférica (¢ = 1) Trigonometria Hiperbdlica (¢ = -
1)
cos(c) = cos(a) cos(b) cosh(c¢) = cosh(a) cosh(b)
tan(b) = cos(ZA) tan(c) tanh(b) = cos(ZA) tanh(c)
sin(ZA) cos(b) tan(c¢) = tan(a) sin(ZA) cosh(b) tanh(¢) = tanh(a)
tan(ZA) sin(b) = tan(a) tan(ZA) sinh(b) = tanh(a)

sin(ZA) B sin(ZB) B | sin(ZA) B sin(ZB) B |

sin(@)  sin(h)  sin(c) sinh(a) = sinh(b)  sinh(c¢)
area(AABC) = LA+ (B —m/2 area(AABC) =n/2 - LA— (B
cos(a) = cosh(a) =

cos(b) cos(c) + sin(b) sin(c) cos(ZA)  cosh(b) cosh(¢) — sinh(b) sinh(c) cos(LA)
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