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1. – Introducción. 

La noción de métrica o medida está inmersa en las matemáticas, al menos, desde los mismos 

orígenes de la Geometría. Cuenta Heródoto (Siglo V AC) en la historia del mundo antiguo, 

que, la geometría tuvo su origen en Egipto, y estaba asociada a las técnicas de medir terrenos; 

de allí su nombre griego: de geo, tierra y  metron, medida. La medida es tema importante en 

toda rama de las ciencias fácticas, y particularmente llega a casi todo el espectro del análisis y 

las matemáticas aplicadas, desde las ecuaciones diferenciales hasta la teoría de probabilidades. 

La teoría de la medida se convirtió en una parte independiente del análisis comenzando el siglo 

XX con los trabajos de Henri Lebesgue (1875-1941), Maurice Frechet (1878-1973) y Emile 

Borel (1871-1956) de un lado, y del otro con los aportes a la construcción de los espacios, 

llamados abstractos, por David Hilbert (1862-1943) y Stephan Banach (1892-1945) y la fuerza 

que imprimió a estos temas la escuela polaca de matemáticas liderada por Zygmunt 

Janiszewski (1888-1920), primero, y luego por Waclaw Sierpinski (1882-1969), Kazimierz 

Kuratowski (1896-1980), Stefan Mazurkiewicz (1888-1945), Alfred Tarski (1902-1983) y 

Stanislaw Ulam (1909-1984), entre otros. Un impulso importante en la generalización del 

estudio de la teoría de la medida, a nivel universitario, la inició Paul R. Halmos (1916-2006)1 

con su libro, ahora un clásico, Measure Theory. Halmos, un discípulo de J. L. Doob (el mismo 

de los Procesos Estocásticos), fue asistente de John von Neumann en el Instituto de Estudios 

Avanzados  de la Universidad de Princeton y es hoy, un personaje de gran estatura en la 

comunidad matemática mundial. 

Entre lo más intuitivo del conocimiento matemático está el concepto de medida, que no es otra 

cosa que asociar a un objeto un valor numérico. Los objetos a los que se aplica la medida, 

desde luego, deben ser susceptibles de ser medidos, como, por ejemplo, la longitud de una 

curva o de un segmento de recta, el área de una superficie, la densidad de la materia, la carga 

eléctrica de una batería, la probabilidad de que un fenómeno o suceso ocurra. La medida en los 

segmentos, es la longitud, en las superficies, el área y en los sólidos, el volumen. Estas medidas 

que vienen desde los griegos, no fueron cuestionadas si no hasta los principios del siglo XX, 

cuando se encontraron resultados muy extraños como es el caso de la Paradoja de Banach-

Tarski, según la cual, dos esferas sólidas A y B en el espacio tridimensional, aun de diferente 

volumen, una de ellas podría descomponerse en un número finito de partes disyuntas, de tal 

manera que al rearmarse se puede obtener  la otra. Esto genera resultados contra evidentes, a tal 

extremo, de aceptar que una arveja se puede descomponer en un número finito de partes 

disyuntas para a partir de éstas, reconstruir una esfera del tamaño de nuestro sol. A este 

resultado llegaron Banach y Tarski con argumentos basados en el axioma de elección. Para una 

relación histórica de este resultado y su conexión con el problema de medida, ver [2]. 

El cálculo integral, empezando con el método de Arquímedes, ha asociado cantidades 

numéricas a conjuntos de distinto tipo; ya sean estos, superficies limitadas por curvas, ya sea 

 
1 Ver Obituario de Paul Richard Halmos en: http://www.matematicasyfilosofiaenelaula.info 
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concentración de masa en cuerpos laminares o volúmenes de sólidos. En general, la integración 

de funciones de valor real o de funciones definidas en espacios abstractos, como espacios de 

Hilbert o de Banach asigna valores reales, que cuando son no negativos se pueden pensar como 

valores de una medida. La teoría de probabilidades tiene como objeto de estudio las variables 

aleatorias, que vistas desde la perspectiva del análisis se comportan como funciones, y por lo 

tanto, su tratamiento recurre también a la integral en el caso continuo, y a las series en el caso 

discreto. 

 

2. – La definición de métrica. 

La brevedad de esta nota, no permite estudiar las métricas en extenso. Un estudio detallado de 

estos temas se encuentra en Royden [4]. Pero, la comprensión de lo que sigue no requiere más 

que la definición de métrica. 

 

Una métrica definida en un conjunto  producto SS, es una función d, de valor real, con las 

siguientes propiedades: 

 

(i)   d (x, y)   0. Para todo par (x, y) en SS y d (x, y) = 0, si y solo si x = y. 

(ii)  d(x, y) = d (y, x). Siempre que (x, y) en SS. 

(iii) d(x, z)   d(x, y) + d(y, z), para todo x, y, z en S (Desigualdad del Triángulo).  

 

A la función  d así definida, se le da el nombre de métrica, o función distancia en S. A 

funciones como d, se les da el nombre de funciones de conjunto, porque en efecto, asocian con 

cada conjunto de su dominio, un número real. El par (S, d) se conoce en análisis matemático, 

como un Espacio Métrico. 

 

Un espacio métrico sencillo y cercano a nosotros es, el espacio euclídeo, constituido por R
n

 y 

la métrica euclídea usual: 

d(x, y)  = ( )
=

−
n

i

ii yx
1

2
.  

Donde, x = (x1, x2,…, xn),  y = (y1, y2, … , yn). 

 

También puede definirse métricas en subconjuntos M de R
3 , como por ejemplo en la esfera 

hueca, centrada en el origen y radio R > 0, cuya definición analítica es: 

S 2

R  = {(x, y, z)  R
3
: x

2
 + y

2
 + z

2
 = R

2
}. 

 

Fig. 1 
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Esta superficie, también conocida como “2-esfera”, es un ejemplo, (entre los más sencillos, 

después de la recta y la circunferencia), de ciertos objetos topológicos introducidos por 

Bernhard Riemann (1826-1866), que se denominan variedades (o manifolds, en inglés). Una 

buena referencia para estos temas es el capítulo 1 del libro de S. S. Chern [1]. 

En topología se entiende por variedad n-dimensional, un espacio de Hausdorff, segundo 

contable, para el cual, toda vecindad de un punto de la variedad es homeomórfica a una n-

esfera abierta del espacio euclídeo R n
.  

 

Una superficie como S 2

R  ,  sirve para modelar la superficie de la tierra. Aquí la distancia entre 

dos puntos x e y, se calcula usando la longitud de la geodésica que une a estos puntos. Las 

curvas que unen dos puntos, de tal forma que su longitud sea mínima, se llaman geodésicas. En 

la 2-esfera, las geodésicas corresponden a arcos de circunferencias máximas.  Circunferencias 

máximas son circunferencias que resultan de la intersección de la superficie esférica con planos 

que pasan por el centro de la esfera. Más adelante daremos fórmulas explícitas que definen esta 

distancia. Las “rectas” en la 2-esfera corresponden a circunferencias máximas. Se observa que 

las perpendiculares (Figura 1), a una recta se interceptan en un punto (para el caso de la figura, 

en el polo norte). La geometría inducida por la métrica que daremos para S 2

R  es riemanniana, 

con una característica muy especial: no hay rectas paralelas. 

 

3. – Proyecciones y Métricas. 

Una proyección cartográfica de un subconjunto abierto U de la esfera S 2

R , en el plano R
2

, es 

una función, X: U →  R
2

, donde X es tal que: 

i)   X es uno a uno,  

ii)  X es diferenciable y 

iii) X tiene inversa diferenciable.  

Funciones de este tipo se conocen como difeomorfismos. Una aplicación conocida de este tipo, 

es la aplicación introducida por Gerardus Mercator en 1569, usada en cartografía para hacer 

levantamiento de mapas de regiones de la tierra. La definición de proyección cartográfica 

puede extenderse, desde luego, a superficies S más generales como, toros o variedades de otras 

dimensiones. 

La imagen de U en R
2

por una proyección de este tipo, se llama un mapa cartográfico o un 

atlas de la superficie considerada. Para deducir aspectos geométricos de la superficie S 2

R  o de 

una de sus partes U, debemos analizar sus versiones planares, o sean sus mapas, X (U) en R
2

, 

donde X es una función con las características arriba mencionadas. A través de la proyección 

cartográfica llevamos los rasgos geométricos que nos interesan de U al plano, y es allí donde 

los estudiamos  para deducir características a veces difíciles de estudiar directamente en la 

superficie, como son: medidas de longitud, áreas de regiones, ángulos entre curvas, etc. La 

medida geométrica básica de una curva es su longitud, y ésta puede calcularse si conocemos la 

métrica que rige la proyección de la curva en R
2

. Generalmente los atlas traen las escalas que 

permiten calcular distancias en los mapas a fin de estimar esas mismas distancias en la 

superficie “mapeada”. La escala común viene en kilómetros, o en millas estatutarias que 

recuerdan la proyección de Mercator. La métrica asigna a cada punto de X(U) un producto 

interno con el cual la longitud de los vectores tangentes y los ángulos entre vectores tangentes 
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en el plano se pueden determinar, como si ellos fueran las curvas correspondientes sobre la 

superficie y fueran medidas allá. 

Fue Eugenio Beltrami (1835-1900) quien probó que la condición para que existan proyecciones 

definidas en la variedad que conviertan geodésicas en rectas sobre el plano es que, la superficie 

tenga curvatura constante. Consecuencia de este trabajo fue el hecho de considerar superficies 

de curvatura negativa pero constantes, lo que le condujo a resultados interesantes en 1868, 

algunos de los cuales intentaremos describir aquí. 

Normalmente una métrica  ds, en S 2

R se representa en la siguiente forma: 

 

 

Con lo cual estamos significando, que la longitud s de la curva Utt →],[: 10 queda 

determinada por la integral, 

 
 

Donde (u(t), v(t)) = X ).(t  Aquí X )(t , corresponde a la función X calculada en el radio 

vector )(t  que traza la curva cuando t recorre el intervalo [t 0  , t 1 ]. Hemos encerrado en 

círculos los diferenciales para resaltar el rol que juega la medida en la definición de métrica: 

aquí la métrica ds, es la medida del arco de curva en términos de las medidas diferenciales du, 

dv y dt. Cuando la superficie es un subconjunto de R
3
, las funciones componentes de la 

métrica se calculan de la proyección a través de ciertos productos internos  en R
3
. Más 

exactamente para proyecciones de la esfera se tiene:  

 

Para describir una superficie abstracta, simplemente eliminamos el dominio de la proyección. 

Esto es, se nos da una colección (el atlas) de coordenadas cartográficas o proyecciones, junto 

con la métrica (las escalas) que determinan localmente la geometría, es decir la forma de medir 

en cada mapa. Se entiende que en sectores donde hay traslapamientos, las medidas deben 

coincidir, condición que la va hacer precisa las reglas de transformación propias de la 

geometría diferencial. Para detalles sobre estos temas puede verse el libro de S. S. Chern [1]. 

Aquí nos interesa una proyección particular de la esfera S 2

R , que se define en el hemisferio sur, 

digamos, U  = {(x, y, z)  S 2

R :  z < 0}. Proyectamos U sobre el plano T = {(x, y, -R)  R
3
}, 

tangente a la semiesfera en el polo sur,  llevando una recta desde el centro de la esfera, tocando 

la superficie U en un punto hasta llegar al plano T, como se ve en la figura 2. Una proyección 

de este tipo se llama proyección central o “gnómica” y está dada por: 

X( , ) = (- Rcos( )cot( ), - Rsen( )cot( )), 

donde hemos identificado T con R
2

, al ignorar a  la coordinada en z. Así  damos  a  la  esfera  

sus  coordenadas  geográficas, su  longitud   en  (- ,  ) y su latitud   en (- /2, 0). Los 
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puntos del hemisferio norte quedarán también determinados al hacer énfasis en que la latitud es 

norte, al igual que lo hacemos en geografía terrestre. 

 
Fig. 2 

4. El Programa de Beltrami 

La proyección central goza de una propiedad muy interesante: las geodésicas sobre la esfera, 

esto es, las circunferencias máximas (o arcos de éstas), se convierten por virtud de la 

proyección, en rectas o en segmentos de rectas en el plano. Esto hace que la navegación 

parezca sencilla usando el recurso de esta proyección por cuanto que la trayectoria de menor 

longitud en la esfera, corresponde en el plano, o en el mapa, a una trayectoria rectilínea. 

Eugenio Beltrami, se propuso el problema de determinar la existencia de una superficie, para la 

cual, una proyección lleva, geodésicas, a líneas rectas en el plano. Su prueba lo condujo a que 

si esa superficie existe, ésta debe tener curvatura constante. Cuando la curvatura es positiva, las 

esferas S 2

R son los ejemplos estándar. 

La métrica que aparece usando la proyección central está dada por: 

 

Tomando q = 1/R
2

(la curvatura), ds toma la forma: 

 

                       ( 1 ) 

 

Ahora supongamos que hacemos variar q sobre R. Cuando q > 0, la geometría que encontramos 

es la geometría de la esfera de radio 1/ q . Cuando q = 0, encontramos ds
2

 = du
2

 + dv
2

, que 

corresponde a la métrica euclídea. Cuando q < 0, Beltrami encontraría algo nuevo: una 

proyección cartográfica que no correspondía a una superficie concreta. 

 

 

5. – Definición del q-plano y la noción de longitud. 

 

El q-plano es el subconjunto Dq  de R
2

dado por 

 

Dq = {(u,v) : 1 +qu
2

  +qv
2

 > 0}, 

dotado de la métrica (1). 
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Cuando q  <  0, se encuentra el disco abierto de radio 1/ q− , centrado en (0 , 0); para q   0, 

Dq = R 2 , el plano euclídeo. Para cada escogencia de q, las rectas euclídeas en Dq corresponden 

a geodésicas en la geometría determinada por ds 2 .  

 

Vamos a hacer un poco de trigonometría en Dq, comenzando con los triángulos rectángulos. El 

problema básico de la trigonometría es la llamada resolución de triángulos, donde se trata de 

determinar las relaciones de los ángulos y los lados del triángulo. Es de destacar que entre las 

primeras áreas de las matemáticas en desarrollarse, estuvo la trigonometría esférica, en razón al 

hecho de que ésta tiene mucho que ver con astronomía. Fue por ello que la cultura babilonia 

desde el II milenio antes de Cristo se interesó en estos temas. La trigonometría esférica, sin 

embargo, fue tratada sistemáticamente por Leonhard Euler (1707-1783), quien fijó, desde esa 

época los métodos usados para la resolución de triángulos esféricos. La resolución de triángulos 

esféricos corresponde al problema de encontrar tres datos desconocidos, cuando se conocen los 

tres datos restantes relacionados con lados o ángulos de un triángulo esférico. 

 

Queremos estudiar el triángulo rectángulo en el plano Dq  y en relación con la métrica ds 

definida en (1). Para obtener las longitudes de los lados de un triángulo rectángulo 

supondremos que su comportamiento geométrico es invariable en todo Dq, lo que nos permite 

escoger un triángulo convenientemente situado, por ejemplo, aquel que tenga uno de sus 

vértices en el el origen del plano (u, v) y uno de sus catetos en el eje u, como se muestra en la 

figura 3. 

 
 

Fig. 3 

Lo primero a confirmar es que el triángulo es, en efecto, un triángulo rectángulo en Dq. El 

ángulo en C está formado por segmentos que vienen de curvas coordenadas, es decir, de curvas 

del tipo  u ? (u, 0) y v ? (x, v). El ángulo entre las dos curvas puede leerse directamente de la 

métrica: el coseno del ángulo formado por las curvas coordenadas viene dado por F/ EG  y F 

= -quv/( 1 -  u
2

 -  v
2

). Puesto que v = 0 en C, estas curvas se interceptan en ángulo recto. En 

segundo lugar determinamos la longitud de los lados. Parametrizamos AC como la curva  (t) 

= (t, 0), con 0   t   x.  d    / dt =(1, 0), ds = (1 + qt
2

)
1−
/dt y obtenemos 

 

 

  

Para el lado BC, sea  (t) = (x, t), 0   t   y. Entonces  d  / d t = (0, 

1). 

Y,  ds = 
21 qx+ dt/(1+qx

2
+qt

2
). De donde se sigue que 
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Finalmente para el lado AB, sea  (t) = (tx, ty) con 0   t   1. Entonces d  / d t = (x, y),  y  

 

 

 

En todos los casos aparece la integral dtqt
r


−+

0

12)1( . La teoría de funciones elípticas sugiere 

introducir una nueva función. 

 

 

5 Funciones elípticas y el teorema de Pitágoras. 

 

Sea s un número real, definimos la función q (s), implícitamente a través de la ecuación: 

 

 
 

Para el triángulo rectángulo ABC, la definición nos da 

 

       ( 2 ) 

 

q (s)  juega el rol de la función tangente en Dq. Podemos introducir las otras funciones 

análogas a las funciones trigonométricas, explorando las propiedades de q (s). La primera 

propiedad que encontramos se deriva de la aplicación del teorema fundamental de cálculo: 

 

d q (s)/ds = 1 + q q
2 (s). 

 

Por analogía con d/ds (tans) = sec
2

s, introducimos las siguientes funciones  q (s)  y  q (s), 
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De la definición se sigue 

 
EL TEOREMA DE PITÁGORAS. 

Supongamos que el triángulo ABC es un triángulo rectángulo en Dq  con su ángulo recto en C. 

Si la longitud de los lados opuestos a los vértices A, B y C, son a, b y c, entonces 

 
 

Demostración. Por la definición, se tiene: 

 
Puesto que 

 
 

De lo cual se sigue que: 

 

 
 

Para relacionar esta expresión con el tradicional teorema de Pitágoras, vamos a considerar qué 

ocurre cuando q tiende a cero. Usando series infinitas, podemos escribir: 

 
 

Por lo tanto b
2

= x
2

- q(2x
4

/3 + …). 

Usando los valores de  a  y c dados por:   

                          
Expandiendo el denominador e integrando las series, llegamos a que 

 

 
Haciendo tender q a cero se obtiene 

                                     
De donde se sigue a

2
+ b

2
  = c

2
, el conocido teorema de Pitágoras. 
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6. – Valores particulares. Aquí las variables están relacionadas según la figura 3. 

 

 

Trigonometría Esférica (q = 1)    Trigonometría Hiperbólica (q = -

1)  
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