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El Computador más Pequeño del 
Mundo 

Mucho antes que aparecieran el iPod Nano y los portátiles, aun mucho 
antes que naciera Bill Gates, un matemático británico probó que era 
posible construir computadores capaces de ser programados para 
llevar a cabo cualquier tipo de computación. Este matemático fue Alan 
Turing y el artefacto teórico que inventó en la década de los años de 
1930 se conoce hoy como la máquina de Turing. Para ser exactos, hay 
una familia completa de máquinas hipotéticas de computación. Para 
una introducción sobre este tema se puede visitar: 
http://en.wikipedia.org/wiki/Turing_machine 
 
La segunda guerra mundial le dio a Turing la oportunidad de poner en 
práctica su teoría, pues pasó los años de la guerra en Bletchley Park 
(la institución británica dedicada a quebrar códigos secretos) 
construyendo un computador real para decodificar los mensajes de la 
codificadora Enigma de los alemanes, hecho que se constituiría en un 
punto decisivo en el curso de la guerra. 
 

                                                 
1 La columna original del mes de mayo se puede leer en: http://www.maa.org/devlin/devlin_05_09.html  
2 Esta columna apareció en Noviembre de 2007, pero por su interés la reproduzco aquí. La columna 
original en inglés puede leerse en: http://www.maa.org/devlin/devlin_11_07.html   
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El computador construido en Bletchley Park3, como todos los 
computadores de allí en adelante, es mucho más complicado que una 
máquina teórica de Turing. En principio usted o yo podríamos construir 
físicamente una máquina de Turing y en efecto varias personas lo han 
hecho, pero no sería útil en un sentido práctico, pues le tomaría 
decenas o cientos de años programarla para que efectúe cálculos 
útiles; peor aun, resolver ciertos problemas le tomaría mucho más. 
Ellas pueden ser simples, pero no son prácticas. Su importancia radica 
en la posibilidad que nos dan de entender qué es una computación y 
cómo opera. (Por ejemplo, la seguridad del número de las tarjetas de 
crédito cuando se ordena una compra en línea depende crucialmente 
de las matemáticas involucradas en las máquinas de Turing). 
 
La idea de construir máquinas para hacer aritmética (en particular) es 
tan antigua como las matemáticas mismas. Los primeros intentos, 
tales como arrumes de piedrecillas o el ábaco, no hacen en realidad 
ninguna operación matemática, ellos simplemente permiten una forma 
conveniente de almacenar los números que son manipulados por el 
operario, quien es en realidad el que hace las matemáticas. Blas Pascal 
(1623-1662) fue una de las primeras personas en diseñar y construir 
una máquina, la Pascalina, que si realizaba cálculos. Charles Babbage 
(1791 - 1871) fue otro pionero famoso en la historia del diseño de 
máquinas calculadoras. Pero todos los intentos iniciales estaban 
enfocados al diseño de máquinas con un propósito específico. Nadie 
había pensado en construir máquinas que pudieran hacer cualquier 
tipo de computación. 
 
Parte de la razón está en que no fue sino hasta los años de 1930 que 
alguien trató de especificar el sentido exacto de lo que se quiere 
significar por “computación”. Turing inventó el concepto de “Máquina 
de Turing” con el propósito de formular una definición precisa: una 
función de números a números (digamos) es “computable” si ésta 
puede calcularse con el recurso de una máquina de Turing. 
 
De primerazo, esta definición parece excesivamente estrecha. Las 
máquinas de Turing son artefactos de cálculo demasiado simples. 
¿Pero qué hay sobre funciones que pueden calcularse, pero sólo con el 
recurso de una máquina más complicada que una máquina de Turing? 
Bien, hay algo divertido en torno a este punto. Ni en el tiempo de 
Turing, ni posteriormente hasta ahora, alguien ha producido un simple 
ejemplo de una función que sea obviamente (probable) computable 
(por uno u otro artefacto) que no pueda ser calculado por una 
máquina de Turing. Más aun, alrededor del mismo tiempo en que 
Turing desarrollaba sus trabajos, otros matemáticos (entre ellos Kurt 

                                                 
3 Para otros detalles de los aportes de Turing a los computadores ver mi artículo Breve Historia del 
Computador en:  http://www.matematicasyfilosofiaenelaula.info/historiam.htm  
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Gödel, Stephen Kleene y Alonzo Church) formularon definiciones 
formales alternativas de “funciones computables” y al final todas 
resultaron ser equivalentes a la noción introducida por Turing. De este 
modo se ha establecido un consenso entre los matemáticos de que la 
definición de Turing captura nuestras más intuitivas nociones de lo que 
significamos por computable. Este consenso, que aun permanece hoy, 
es conocido como la Tesis de Church- Turing. Se reemplaza así, una 
noción intuitiva con otra noción precisa, definida matemáticamente. 
 
Un resultado importante que probó Turing acerca de su nuevo 
concepto fue que no era necesario especificar una máquina de Turing 
en particular para cada computación dada. Es posible construir lo que 
el llamó una “máquina universal de Turing”, que pudiera interpretar un 
“programa” introducido en ella como datos a efecto de calcular 
cualquier función computable que se le presente. Hoy estamos 
familiarizados por supuesto con la idea de que los computadores son 
generalmente programables, procesando palabra un minuto, al 
siguiente haciendo matemáticas y luego bajando canciones del 
Internet. Pero en el pasado, en el tiempo de Turing, esto fue una idea 
novedosa, aunque solamente en el sentido teórico. 
 
Una pregunta fascinante acerca de la máquina universal de Turing es: 
¿qué tan simple una máquina universal de Turing puede ser (y que sea 
capaz de realizar toda computación posible)? En los años de 1950 y 
1960, mucho esfuerzo se hizo a fin de probar que una máquina de 
Turing con dos estados internos, y computación sobre sólo dos 
símbolos, no puede ser universal. (Los computadores reales de hoy en 
día trabajan binariamente (con dos símbolos), pero tienen un gran 
número posible de estados internos.) Marvin Minsky, el pionero de la 
ciencia de la computación en el MIT construyó una máquina universal 
de Turing con siete estados y con cuatro símbolos de computación. 
 
Entonces, en la década de 1990, el matemático Stephen Wolfram, 
mejor conocido por su programa Mathematica, logró construir una 
máquina universal de Turing con dos estados y con cinco símbolos de 
computación. El también propuso una candidata a ser aún más simple, 
una que podría ser la más simple posible. La máquina de Wolfram 
tiene dos diferentes estados internos y opera con sólo tres símbolos. 
Se la conoce como la Wolfram 2,3. 
 
Wolfram tenía razón al creer que su computador era en efecto capaz 
de realizar cualquier computación, pero no fue capaz de probarlo. Él 
describió el problema en su libro de 2002 Una Clase Nueva de Ciencia 
y eso condujo a varios intentos por encontrar una prueba, pero nadie 
lo logró. Comenzando el año de 2007, Wolfram ofreció un premio de 
US$25000 para la primera persona que resolviera el problema. 
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Justamente unos pocos meses después, un estudiante universitario de 
veinte años en Birmingham, Inglaterra, Alex Smith, encontró la 
solución. Su prueba, la que se encuentra en la Web, cubre unas 
cincuenta páginas de razonamientos matemáticos. 
 
Alex es el mayor de tres hermanos. Sus padres son ambos profesores 
de la Universidad de Birmingham, donde Alex es estudiante de 
pregrado en electrónica e ingeniería eléctrica y de sistemas. Él empezó 
a usar computadores desde cuando tenía seis años de edad, y conoce 
alrededor de veinte lenguajes de programación.  
 
Se puede hallar los archivos PDF de la prueba de Smith, más un 
montón de detalles sobre el problema de Wolfram, en el sitio Web de 
la Wolfram: www.wolframscience.com/prizes/tm23/   


